

After this presentation you will be able to:
List the characteristics of an ideal Operational Amplifier (OP AMP) circuit.
Identify and utilize fundamental OP AMP circuits to amplify and signals.
Use OP AMP circuits to reduce inter-stage loading effects in sensor circuits.
Average sensor signals using OP AMP circuits.

LEARNING ObJECTIVES

OP AMPs are voltage amplifiers designed originally for use in analog computers

OP AMPs are direct coupled (dc) amplifiers that amplify both ac and dc signals simultaneously. Requires bipolar supplies.

Schematic symbol for non-ideal OP AMP
Two inputs: $\quad V_{1}=$ inverting input
$V_{2}=$ non inverting input

Inverting Voltage Amplifier Non-Inverting Voltage Amplifier

V_{0} Limited by saturation Large A_{v} causes $V_{o}= \pm V$

$A_{V}=\left(1+\frac{R_{f}}{R_{\text {in }}}\right) \quad V_{o}=V_{i}\left(1+\frac{R_{f}}{R_{\text {in }}}\right)$
$R_{\text {in }}=R_{\text {in }}$ of OP AMP
A_{v} has minimum value of 1

Fundamental OP AMP Circuits

Voltage follower (Impedance buffer) circuit used to reduce circuit loading. (Has a high $Z_{\text {in }}$ and low $Z_{\text {out }}$)

Characteristics

Practical Circuit (LM741)

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{v}}=1 \\
& \mathrm{Z}_{\text {in }}=1 \mathrm{M} \Omega \\
& \mathrm{Z}_{\mathrm{o}}=10 \Omega
\end{aligned}
$$

Ideal
$A_{v}=1$
$Z_{\text {in }}=$ infinite
$Z_{o}=0$

Voltage divider formula only valid for infinite load resistance

Find V_{0} under load

No load V 。
$\mathrm{V}_{\mathrm{o}}=\left(\frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+10 \mathrm{k} \Omega}\right) \cdot 12 \mathrm{~V}$
$\mathrm{V}_{0}=4.0 \mathrm{~V}$
With load resistor
$\mathrm{R}_{\mathrm{L}}\|5 \mathrm{k} \Omega=5 \mathrm{k} \Omega\| 5 \mathrm{k} \Omega=2.5 \mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{oL}}=\left(\frac{2.5 \mathrm{k} \Omega}{2.5 \mathrm{k} \Omega+10 \mathrm{k} \Omega}\right) \cdot 12 \mathrm{~V}=2.4 \mathrm{~V}$ ANS

Example 3-1 Buffered Voltage Divider Circuit

Add impedance buffer

Find V_{0} with load and OP AMP buffer Assume LM741 with $R_{i}=1 M \Omega$ and $\mathrm{R}_{\mathrm{o}}=10 \Omega \quad \mathrm{~A}_{\mathrm{V}}=1$ so $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{o}}$

> With load resistor
$\mathrm{R}_{\mathrm{L}}\|1 \mathrm{M} \Omega=5 \mathrm{k} \Omega\| 1 \mathrm{M} \Omega=\mathrm{R}_{\mathrm{eq}}$
$\mathrm{R}_{\mathrm{eq}}=\frac{1 \mathrm{M} \Omega \cdot 5 \mathrm{k} \Omega}{1 \mathrm{M} \Omega+5 \mathrm{k} \Omega}=4975 \Omega$
$\mathrm{V}_{\text {in }}=\left(\frac{4975 \Omega}{4975 \Omega+10 \mathrm{k} \Omega}\right) \cdot 12 \mathrm{~V}=3.987 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{o}}=3.987 \mathrm{~V}$ ANS

Example 3-1 Buffered Voltage Divider Circuit (1)

Inverting Summing Amplifier
Find total output using superposition

Gain $v_{1} \frac{-R_{f}}{R_{1}}$
Gain $v_{2} \frac{-R_{i}}{R_{2}}$
Gain $v_{3} \frac{-R_{f}}{R_{3}}$ Total output $\quad \mathrm{v}_{0}=-\mathrm{R}_{\mathrm{f}}\left(\frac{\mathrm{v}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{2}}{\mathrm{R}_{2}}+\frac{\mathrm{v}_{3}}{\mathrm{R}_{3}}\right)$

Output is inverted sum of v_{1}, v_{2}, and v_{3}

Electronic Addition and Subtraction

Improved circuit (non-ideal OP AMP)

Non-inverting Summing Amp

Exanple 3-2 Non-inverting Averager

For the circuit shown find V_{0} with $\mathrm{V}_{\text {in }}=2 \mathrm{Vdc}$

$$
\begin{aligned}
& V_{0}=\frac{-R_{f}}{R_{i n}} V_{i} \\
& V_{0}=\frac{-10 \mathrm{~K} \Omega}{5 \mathrm{k} \Omega} V_{i} \\
& V_{0}=-2 V_{i} \quad V_{i}=2.0 \\
& V_{0}=-2(2.0 \mathrm{~V})=-4 \mathrm{Vdc}
\end{aligned}
$$

LET $R_{f}=5 \mathrm{~K} \Omega$ Find A_{V} and V_{0} for $V_{i}=2.0$
$A_{V}=\frac{-R_{f}}{R_{i}}=\frac{-5 K \Omega}{5 \mathrm{~K} \Omega}=-1 l_{\text {Inverting Voltage }}^{\text {follower }}$
$V_{1 n}=2.0 \mathrm{Vdc}$
$V_{0}=(-1)\left(2 V_{d c}\right)=-2 \cdot 0 V_{d c}$

Example 3-3:Inverting Amplifier

Output is smaller than input. Circuit divides input by 2 ($0.5=1 / 2$)

Example 3-3: Solution (2)

Find V_{0} and A_{v} given values of R and $V_{i}=-1 \mathrm{Vdc}$. Assume nonideal OP AMP with power supply values of $\pm 15 \mathrm{Vdc}$

$$
\begin{gathered}
V_{0}=V_{i}\left(1+\frac{R_{f}}{R_{1}}\right)=V_{i}\left(1+\frac{100 \mathrm{k} \Omega}{50 \mathrm{k} \Omega}\right) \\
V_{0}=-1(3)=-3 V_{d c} \\
\text { No sign change }
\end{gathered}
$$

v_{i}
$A_{v}=\left(1+\frac{R_{f}}{R_{1}}\right)=i+\frac{100 \mathrm{k} \Omega}{50 \mathrm{k} \Omega}$
$A_{v}=1+2=3$

Note: $\mathrm{R}_{\text {in }}$ of non-inverting OP AMP is infinite (Ideally). Circuit will not load previous stage significantly

Example 3-4 Non-Inverting Amp (1)

$\mathrm{V}_{\text {in }}$ rises to 6 Vdc . What is V_{0} ? Assume a non-ideal OP AMP with given power supply values of $\pm 15 \mathrm{Vdc}$
$V_{0}=A_{V} V_{i}=3(6)=18 \mathrm{Vdc}$

This value can't be achieved since the OP AMP saturates between $13-15 \mathrm{Vdc}$. Power supplies limit output. Ac signals distorted (clipping)

Example 3-4 Solution (2)

$$
V_{\text {Gains }}=-4(0.20)+-6.667(0.1)+-10(-0.1) \quad \begin{aligned}
& V_{0}=-0.8-0.6667+1.0 \mathrm{Vdc} \\
& V_{0}
\end{aligned}
$$

Example 3-5 Inverting Summing

 Amplifier$$
\begin{gathered}
\text { Letting } R_{1}, R_{2} \text { and } R_{3} \\
\text { be potentiometers } \\
\text { produces an audio } \\
\text { mixer }
\end{gathered}
$$

When $R_{1}=R_{2}=R_{3}$ Output voltage is the average of the input values

Summing Amplifier Applications

LM34 - temperature sensors. Gain $=10 \mathrm{mV} / \mathrm{F}$
$\mathrm{T}_{1}=50 \mathrm{~F}_{2}=45 \mathrm{FT}_{3}=40 \mathrm{~F}$
Average the temperature using a gain of -1 and -5 . Find the value of R_{f} and V_{o} for each gain value.

Example 3-6: Averaging Sensor Signals

To average let $R_{1}=R_{2}=R_{3}=50 \mathrm{k} \Omega$
Summing equation

$$
\mathrm{V}_{0}=-\mathrm{R}_{\mathrm{f}}\left(\frac{\mathrm{v}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{2}}{\mathrm{R}_{2}}+\frac{\mathrm{v}_{3}}{\mathrm{R}_{3}}\right)
$$

Since $R_{1}=R_{2}=R_{3}$

$$
\mathrm{V}_{0}=-\mathrm{R}_{\mathrm{f}}\left(\frac{\mathrm{v}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{2}}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{3}}{\mathrm{R}_{1}}\right)=-\left(\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right)\left(\mathrm{v}_{1}+\mathrm{v}_{2}+\mathrm{v}_{3}\right)
$$

Find relationship for average with 3 inputs and gain of -1

$$
\begin{aligned}
& V_{a v e}=-1 \cdot\left[\frac{v_{1}+v_{2}+v_{3}}{3}\right] \\
& V_{o}=V_{a v e}=-\left(\frac{R_{f}}{R_{1}}\right)\left(\frac{v_{1}+v_{2}+v_{3}}{}\right)=-\left(\frac{1}{3}\right)\left(v_{1}+v_{2}+v_{3}\right)
\end{aligned}
$$

Example 3-6 Solution (1)

Complete Algebra to find value of R_{f}

$$
\begin{aligned}
& -\left(\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right)=-\left(\frac{1}{3}\right) \\
& \mathrm{R}_{\mathrm{f}}=\frac{\mathrm{R}_{1}}{3}
\end{aligned}
$$

Make equation more general by letting n be the number of inputs and A_{v} be the desired gain factor.

$$
\begin{gathered}
V_{0}=-R_{f}\left(\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{1}} \ldots+\frac{v_{n}}{R_{1}}\right)=-\left(\frac{R_{f}}{R_{1}}\right)\left(v_{1}+v_{2} \ldots+v_{n}\right) \\
V_{a v e}=-A_{v} \cdot\left[\frac{v_{1}+v_{2} \ldots+v_{n}}{n}\right]
\end{gathered}
$$

Example 3-6 Solution (2)

Equate the OP AMP output and the average formula

$$
\begin{aligned}
& V_{o}=V_{a v e}=-\left(\frac{R_{f}}{R_{1}}\right)\left(\frac{v_{2}}{r_{2} \ldots+v_{n}}\right)=-\left(\frac{A_{v}}{n}\right)\left(\frac{v_{1}+v_{2}}{}\right) \\
&-\left(\frac{R_{f}}{R_{1}}\right)=-\left(\frac{A_{v}}{n}\right) \\
& R_{f}=\frac{A_{v} \cdot R_{1}}{n} \quad \text { Use this formula }
\end{aligned}
$$

Find sensor output voltages using temperature and gain value

$$
\begin{array}{ll}
\mathrm{T}_{1}=50^{\circ} \mathrm{F} & \mathrm{~V}_{1}=(10 \mathrm{mV} / \mathrm{F})\left(50^{\circ} \mathrm{F}\right)=0.5 \mathrm{~V} \\
\mathrm{~T}_{2}=45^{\circ} \mathrm{F} & \mathrm{~V}_{2}=(10 \mathrm{mV} / \mathrm{F})\left(45^{\circ} \mathrm{F}\right)=0.45 \mathrm{~V} \\
\mathrm{~T}_{3}=40^{\circ} \mathrm{F} & \mathrm{~V}_{3}=(10 \mathrm{mV} / \mathrm{F})\left(40^{\circ} \mathrm{F}\right)=0.40 \mathrm{~V}
\end{array}
$$

Example 3-6 Solution (3)

Find R_{f} and V_{o} for a gain of -1 and $R_{1}=50 k \Omega, n=3$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{f}}=\frac{\mathrm{A}_{\mathrm{v}} \cdot \mathrm{R}_{1}}{\mathrm{n}}=\frac{1 \cdot 50,000 \Omega}{3}=16,670 \Omega \\
-\left(\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right)\left(\mathrm{v}_{1}+\mathrm{v}_{2}+\mathrm{v}_{3}\right)=-\left(\frac{16.67 \mathrm{k}}{50 \mathrm{k}}\right)(0.50+0.45+0.40)=-0.45 \mathrm{~V} \text { ANS }
\end{gathered}
$$

Use average formula to check output

$$
\mathrm{V}_{\mathrm{ave}}=-1 \cdot\left(\frac{(0.50+0.45+0.40)}{3}\right)=-0.45 \quad \text { Checks }
$$

Example 3-6 Solution (4)

Find R_{f} and V_{0} for a gain of -5 and $R_{1}=50 \mathrm{k} \Omega, n=3$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{f}}=\frac{A_{v} \cdot R_{1}}{n}=\frac{5 \cdot 50,000 \Omega}{3}=83,330 \Omega \\
& V_{o}=-\left(\frac{R_{f}}{R_{1}}\right)\left(\mathrm{v}_{1}+\mathrm{v}_{2}+\mathrm{v}_{3}\right)=-\left(\frac{83.33 \mathrm{k}}{50 \mathrm{k}}\right)(0.50+0.45+0.40)=-2.25 \mathrm{~V} \\
& \mathrm{~V}_{\text {ave }}=-5 \cdot\left(\frac{(0.50+0.45+0.40)}{3}\right)=-2.25
\end{aligned}
$$

Note: both values of R_{f} are not standard values. Use potentiometer and closest standard value then calibrate circuit to get desired output

Practical R_{f}

Example 3-6 Solution (5)

Differential Voltage Amplifier Circuit

Amplifiers the difference between + - terminals

Differential Voltage Amplifier

Can use voltage differential amp to generate an error signal

Block diagram

$e=r-m$

End Lesson 3: Operational Amplifier Circuits in Analog Control

ET 438a
Automatic Control Systems Technology

